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1 INTRODUCTION     
In 21’st century, the greatest problem arises that, ‘How to 
understand the nature and origin of dark matter and dark 
energy.’ The presence of dark energy opposes the self-
attraction of matter and causes the expansion of universe to 
accelerate; this is indicated in the survey of cosmological 
distinct type Ia Supernovae [15,18]. This was confirmed in 
the further observations [26, 19, 9]. Also our universe is 
dominated by dark energy (DE) with 4/3≅  of the critical 
density is strongly indicated from the observations 
[8,11,12]. Now the problem lies in detecting an exotic type 
of unknown repulsive force, termed as DE which is 
strongly responsible for an accelerating phase of universe. 
The detection of DE would be a new clue to an old puzzle: 
the gravitational effect of the zero point energies of 
particles and fields [29,30]. In the late 1990’s, the term DE 
was first introduced after the brightness of distinct 
supernovas exploding stars was studied. Those 
observations supposed that, the universe is mainly filled 
with three components: 4% for baryonic matter, 23% for 
nonbaryonic dark matter and 73% so called DE [21]. A 
matter without pressure and DE is an exotic energy with 
negative pressure called as dark matter. The existence of 
DE fluids come from the observations of the accelerated 
expansion of the universe. The isotropic pressure of the 
cosmological models give the best fitting of the 
observations. 

Many relativists have taken a keen interest in 
studying Bianchi type-IX universes because familiar 
solutions like the Robertson-Walker universe with positive 
curvature, the   de-sitter universe , the Taub-Nut solutions 
etc. are of Bianchi type-IX space times. Bali et al. [6, 7] 
studied Bianchi type-IX string cosmological models with 
bulk viscous fluid distribution in general relativity. 

Pradhan et al. [16] have investigated some homogeneous 
Bianchi type-IX viscous fluid cosmological models with a 
varying Λ . Tyagi et al. [27] have established Bianchi type-
IX string cosmological models for perfect fluid distribution 
in general relativity. Reddy et al. [17] have presented 
Bianchi type-IX cosmic strings in a scalar tensor theory of 
gravitation.  

The anisotropy of the DE within the framework of 
Bianchi type space times is found to be useful in generating 
arbitrary ellipsoidality to the universe and to fine tune the 
observed CMBR anisotropies. Koivisto and Mota [13] have 
investigated cosmological models with anisotropic EoS. 
Akarsu et al.5 have investigated Bianchi type-I anisotropic 
dark energy model with constant deceleration parameter. 
Yadav  et al. [28] have studied Bianchi type-III anisotropic 
DE models with constant deceleration parameter. Suresh 
kumar et al. [23] have studied Bianchi type-V model of 
accelerating universe with DE. Suresh kumar [24] have 
investigated Bianchi type-II model in the presence of 
perfect fluid and anisotropic DE. Recently Adhav et al. [1, 2, 
3, 4] have studied Kantowski-Sachs, Kaluza-Klein LRS 
Bianchi Type-II and Bianchi Type-VI0 cosmological models 
with anisotropic DE. To have a general description of 
anisotropic DE component, we consider a 
phenomenological parameterization of DE in terms of its 
equation of state (ω ) and two skewness parameters  

),( γδ .  
In this paper, first the general form of the 

anisotropy parameter of the expansion for Bianchi type-IX 
metric is obtained. Here the skewness parameters δ and γ  
are equal which are the deviations from ω  on  y and z axes 
respectively. The exact solutions of the Einstein’s field 
equations have been obtained by reducing anisotropic 
parameter of the expansion to a simple form for volumetric 
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exponential expansion and power law expansion. Some 
features of the evolution of the metric and the dynamics of 
the anisotropic DE fluid have been examined. 

2. FIELD EQUATIONS :  
Bianchi type-IX metric is considered in the form, 

ydxdzadzyaybdybdxadtds cos2)cossin( 222222222222 −++++−=

       (1) 
where a, b are scale factors and are functions of cosmic time 
t.  
The Einstein’s field equations in natural units ( 18 =Gπ and 

1=C ) are given by 

ijijijij TRgRG −=−=
2
1 ,    (2)  

where ( )0,0,0,1=iu  is the four velocity vector and 

1−=ji
ij uug ; ijR  is a Ricci tensor, R is a Ricci scalar, ijT  is 

an energy-momentum tensor. 
The energy-momentum tensor of an anisotropic fluid is in 
the form 

 [ ]3
3

2
2

1
1

0
0 ,,, TTTTdiagT i

j = .             (3) 
We parametrize it as follows, 
        [ ]zyx

i
j pppdiagT ,,,ρ−=  

[ ] ρωωω zyxdiag ,,,1−=  
[ ]ργωγωω ++−= ,,,1diag ,             (4) 

where ω  denotes the deviation free EoS parameter of the 
fluid, zyx ωωω ,,  are the directional EoS parameters of the 
fluid on x, y and z axes respectively, ρ is the energy density 
of the fluid. xp , yp , zp  are the pressures on x, y and z axes 
respectively.  
Now parametrizing the deviation from isotropy by setting 

ωω =x and then introducing skewness parameter γ  that is 
the same deviations from ω respectively on y and z axes. ω  
and γ  are not necessarily constants and can be functions of 
the cosmic time .t  
In a co-moving coordinate system, Einstein’s field 
equations (2) for the metric (1) with the help of equation (4) 
yields,   
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a              (7) 

The over dot ( )⋅ denotes the differentiation with respect to 
cosmic time .t  

3.  ISOTROPIZATION AND THE SOLUTIONS :  
The directional Hubble parameters in the directions of x, y 

and z axes for the metric (1) are defined as 

a
aH x


= , 
b
bHH zy


== .                           (8) 

The mean Hubble parameter is 











+==
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2
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1 ,                (9) 

where the spatial volume of the universe is  
2abV = .                           (10) 

The anisotropy of the expansion can be parameterized after 
defining the directional Hubble parameters and the mean 
Hubble parameter of the expansion. 
The anisotropic parameter of the expansion is defined as  

23

13
1








 −
=∆ ∑

= H
HHi

i
,           (11)  

where iH  ( )3,2,1=i  represent the directional Hubble 
parameters in the directions of  x, y and z respectively. 

0=∆  corresponds to isotropic expansion. The space 
approaches isotropy, in case of diagonal energy momentum 
tensor ( 00 =iT , where 3,2,1=i ) if 0→∆ , ∞→V and 

000 >T  ( )0>ρ  as ∞→t . (Collins and Hawking 10). 
Using zy HH =  and simplifying the equation (11), we get 

( )2
29

2
yx HH

H
−=∆ ,           (12) 

where ( )yx HH −  is the difference between the expansion 
rates on x and y axes which can be obtained by using the 
field equations. 
On subtracting (6) from equation (7), we obtain 

∫ 









−

−
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4

221
,       (13)  

where λ is a constant of integration and the term with γ  is 
the term that arises due to the possible intrinsic anisotropy 
of the fluid. 
To obtain the anisotropy parameter of the expansion, we 
use (13) in (12) and obtain 

2
2

4

22

29
2 −

























−

−
+=∆ ∫ VVdt

b
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Choosing γ =0, the anisotropy parameter of the expansion 
for a Bianchi type-IX cosmological model in the presence of 
perfect fluid reduces to  

2
2

4

22

29
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 −
+=∆ ∫ VVdt

b
ab

H
λ .                          (15) 

The integral term in (14) vanishes for 

4

22

b
ab

ρ
γ −
= .            (16)  

This leads to the following energy momentum tensor 
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Using (16) in equation (14) therein, the anisotropic 
parameter of the expansion reduced to  

2
2

2

9
2 −=∆ V

H
λ  .           (18) 

It is seen that the above anisotropic parameter of the 
expansion is exactly same for  exponential expansion in 
Bianchi type-III space time (Akarsu et. al. [5]) for 
anisotropic fluid and is equivalent to ones obtained for 
exponential expansion in Bianchi type-I (Kumar et. al. [14]) 
and Bianchi type-V (C. P. Singh et. al. [20], J. P. Singh et. al. 
[21]) cosmological models with isotropic fluid.  
 The vanishing of the integral term also reduces the 
difference between the expansion rates on x and y to the 
following form  

2abV
HH yx

λλ
==−  .                        (19) 

The most general form of the energy density in Bianchi 
type-IX framework by using the field equation (5) and the 
definition of the anisotropic parameter of the expansion 
(11) is obtained  as 

4
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Using (17) in the Einstein’s field equations (5-7) we have  
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To obtain the solution of the field equations, there are three 
linearly independent equations (21-23) and four unknown 
functions a , b , ρω, . An extra equation is needed to solve 
the system completely. Therefore we used two different 
volumetric expansion laws: 

kteCV 3
1=                           (24) 

and  mtCV 3
1= ,            (25)  

 where 1C , k  and m  are positive constants. 
The models with the exponential expansion and power law 
for 1>m  exhibit accelerating volumetric expansion. On the 
other hand the model for 1=m  exhibits volumetric 
expansion with constant velocity, whereas the model for 

1<m  exhibits decelerating volumetric expansion. The 
anisotropic fluid we take here can be considered in the 
context of DE in the models with exponential expansion 
and power law expansion for 1>m . Riess et. al. [17,18] and 
Perlmutter et. al. [15] have shown that the decelerating 

parameter of the universe is in the range 01 ≤≤− q and the 
present day universe is undergoing accelerated expansion. 
 
4. MODEL WITH EXPONENTIAL EXPANSION V=C1e3kt :  
The scale factors a  and b are obtained by solving the field 
equations (21-23) for the exponential volumetric expansion 
(24) by considering (19), 

( ) )
9
2exp( 3

1

3
12

21
kte

kC
ktCCa −−=

λ                        (26) 

)
9
1exp( 3

1

3
1

2

1 kte
kC

kt
C

C
b −+













=

λ ,                  (27) 

where 2C  is a positive constant of integration. 
The mean Hubble parameter is  

kH =               (28)  
and the directional Hubble parameters on the x, y and z 
axes are respectively, 
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x e
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2 −+=
λ  and 

 z
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13
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From equation (12), the anisotropic parameter of the 
expansion is obtained by using the directional and mean 
Hubble parameters, 
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It is observed that the above anisotropic parameter of the 
expansion is exactly same for  exponential expansion in 
Bianchi type-III space time (Akarsu et. al. [5]) for 
anisotropic fluid and is equivalent to ones obtained for 
exponential expansion in Bianchi type-I (Kumar et. al. [14]) 
and Bianchi type-V (C. P. Singh et. al. [20], J. P. Singh et. al. 
[21]) cosmological models with isotropic fluid.  
The energy density of the fluid is obtained from equation 
(20) by using the scale factor 
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Using (26) and (31) in equation (263), the deviation free part 
of the anisotropic EoS parameter is obtained as 
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Also using equations (26) and (27) in equation (16), the 
skewness parameter γ  which is the deviation of ω on z-
axis is obtained as 
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              (33) 
From equation (30), we should note that the anisotropy of 
the expansion ( )∆  is not promoted by the anisotropy of the 
fluid and decreases to null exponentially as t increases. The 
space approaches to isotropy in this model as 0→∆ , 

∞→V and 03 2 >= kρ  as ∞→t . The energy density ( )ρ , 

the deviation free EoS parameter ( )ω  and the skewness 
parameter ( )γ  are dynamical.  Also there is no big-bang 
type of singularity for particular choice of parameters. As 

∞→t , the anisotropic fluid isotropizes and mimics the 
vacuum energy which is mathematically equivalent to the 
cosmological constant ( )Λ  i.e. as ∞→t we get 0→γ , 

1−→ω  and 23k→ρ  as in figure 1, 2 and 3 respectively. 

       
      

 

     
 
The universe approaches to isotropy monotonically even in 
the presence of the anisotropic fluid  and the anisotropic 
fluid isotropizes and evolves to the cosmological constant 
in case of exponential volumetric expansion. 
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5. MODEL WITH POWER LAW EXPANSION  mtCV 3
1= :  

In power law volumetric expansion, the scale factors a  and 
b are obtained by solving the field equations (21-23) for the 
exponential volumetric expansion (25) by considering (19), 

( ) m
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where 2C  is a positive constant of integration. 
The mean Hubble parameter is  

t
mH = .             (36)  

The directional Hubble parameters on the x, y and z axes 
are respectively 

m
x t
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1 λ .                         (37) 

From equation (12), the anisotropic parameter of the 
expansion is obtained by using the directional and mean 
Hubble parameters as 
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The energy density of the fluid is obtained from equation 
(20) by using the scale factor 
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Using (34) and (39) in equation (23), the deviation free part 
of the anisotropic EoS parameter is obtained as 
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Also using equations (34) and (35) in equation (16), the 
skewness parameter γ  which is the deviation of ω on z-
axis is obtained as 
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From equation (38), it is observed that, the anisotropy of the 
expansion ( )∆  is not promoted by the anisotropy of the 
fluid. It behaves monotonically, decays to zero ( )0→∆  for 

3
1

>m and diverges ( )∞→∆ for 
3
1

<m  as ∞→t and is 

constant 
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The spatial volume of the universe expands indefinitely for 
all values of m  i.e. as ∞→∞→ Vt , . The universe 
approaches to isotropy i.e. 0→∆  and ∞→V  as ∞→t for 

1>m  . Also we get 1−→ω and 0→γ  as ∞→t  indicating 
that the EoS parameter of the fluid isotropizes and 
approaches a value in quintessence region with regard to 
value of m at later times of the universe for accelerating 
models.  
For the model with 1=m , we have 
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0→∆  and ∞→V as ∞→t indicating that, the space 
approaches to isotropy for the model with 1=m  whereas 
the fluid does not approach to isotropy i.e. 0→ρ  as 

∞→t for 1=m  as shown in figure 4.  For the model with 
exponential expansion, the universe approaches to isotropy 
monotonically even in the presence of anisotropic fluid for 

1=m  and for  1>m  with appropriate values of constant. 
However, the anisotropic isotropizes only in the 
accelerating models ( )1>m at later times of the universe 
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and its EoS parameter evolves into the quintessence region.   
The volume of the universe expands indefinitely for all 
values of m . 
                                         

 
                      

6. CONCLUSION: 
It is conclude that even in the presence of an anisotropic 
fluid, Bianchi type-IX universe can approach to isotropy 
monotonically. The anisotropy of the fluid isotropizes at 
later times of the universe in the accelerating models. The 
fluid evolves into the vacuum energy with , 1−=ω , which 
is mathematically equivalent to the cosmological constant 
( )Λ  at the later times of the universe in the model for 
exponential expansion. Here in this model, we see an 
isotropic expansion but the possibility of dark energy with 
an anisotropic equation of state cannot be ruled out. In 
addition, an anisotropic dark energy does not necessarily 
distort the symmetry of the space and consequently even if 
it turns out the spherical symmetry of the universe that 
achieved during inflation has not distorted in the later 
times of the universe. It is interesting to note that our 
investigations resembles with the investigations of Adhav 
et. al. [1, 2, 3, 4]. 
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